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Application of a Point-Matching MoM Reduced
Scheme to Scattering from Finite Cylinders

Antonis G. Papagiannakisjember, IEEE

Abstract—One of the most common methods for the soluton A method commonly used in this region is the use of
of three-dimensional (3-D) scattering problems is the electric-field the equivalent polarization currents and the formulation of
volume integral equation numerically solved by the application an integral equation for the field inside the scatterer [3], [4].

of the method of moments (MoM)—usually the point-matching The i | . b v b f d
version. Although simple to formulate, it shows inherent diffi- e integral equation can subsequently be transtormed to an

culty and complexity because of the 3-D integrals appearing in algebraic system and solved numerically by the application of
the interaction matrix elements and of the singularity of the the method-of-moments (MoM) technique [1]-[6]. The most

dyadic Green's function (DGF) present in the computation of preferably used version of the MoM is the point-matching one.

the self-cell elements. In this paper, a transformation method is |, .
presented, which in the case of the point-matching MoM, both It is simple to formulate and apply, can treat homogeneous

reduces the 3-D integrals to two-dimensional (2-D) ones, and also@S Well as inhomogeneous problems, gives both the internal
eliminates the need of separate treatment of the singularity while and the external field, and yields sufficiently accurate results,
maintaining the same degree of approximation. Comparison to especially for far-field and other averaged characteristics.
e, P A o S Eeopoi T 2 e _ O of the most seious drawtacks and dificulies it the
by Iayered)::iielectric cylinders ar?d lossy f:)ylindrical shells excite%l application Qf the point-matching MOM is, besides the large
by uniform plane waves. arrays obtained, the 3-D volume integrals that have to be
numerically computed for the evaluation of the cell-interaction
array elements. These 3-D integrals are time-consuming and
difficult to compute, especially for arbitrary cell shapes, and
they usually require additional approximations. In addition,
l. INTRODUCTION special care must be taken and further approximations must
HE PROBLEM of scattering of an incident field bybe made in the evaluation of the diagonal elements, which
dielectric (perfect or lossy) scatterers is a subject &gpresent the self-cell interaction and contain the singularity
great interest in the study of phenomena such as propaga@rihe Green’s function in the self dyad [1]—{[8].
through rain, snow or forests, radiation of antennas in theThe effort to reduce the burden of computation of the
presence of inhomogeneities and obstacles, power absorptiigraction array elements and to effectively treat the self-
by biological tissues for medical diagnosis purposes or f6€ll singularity is evident in works using the MoM [11],
hyperthermia in cancer therapy, coupling to airborne bodiE&#-[26]. The numerical treatment of the singularity can
possibly with dielectric-filled apertures, and many other mahe made by analytically transforming the singular integral,
ifestations of electromagnetic-field interaction with materiglonfining the source point within a cell of arbitrary shape and
bodies. The methods used to attack these problems presesize, and numerically evaluating the integrals [22]. However,
great variety being analytical, semianalytical, or numericdh this case the number of volume integrals per cell increases
However, the complexity of such three-dimensional (3-Dp two or three, while the nearly singular behavior of the
problems almost inevitably leads to the use of numerichitegrals is not avoided in the case of small self-cell volume.
methods for the computation of the internal field as well as tW¢hen the source distribution is uniform or linear, Gauss’
far field characteristics [1], [2]. Whereas asymptotic methodiategral theorem has been used to reduce the dimension of
based on the Rayleigh—Born approximation are suitable five singular integral, mainly in the static case [23], but the
the low-frequency regime, and asymptotic techniques sucéll shape can only be polygonal with straight edges or
as the Wentzel-Kramer—Brillouin (WKB) method and th@olyhedral with planar sides. Also, integration of the Green’s
geometrical theory of diffraction are suitable in the highfunction derivatives is not considered. The use of linear-shape
frequency regime, the so-called resonance region, where thections extends the method and integration of the gradient
objects are of the order of a wavelength, necessitates an exadhe scalar Green'’s function is achieved for planar triangular
solution of Maxwell's equations. cells [25], [26]. The use of FEM-type elements (linear or
parametric) for describing the scatterer volume allows one
to reduce the singular volume integral to a surface one and
Manuscript received February 14, 1996; revised May 19, 1997. also gives greater flexibility in representing complex shapes
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In the present paper, a transformation method is presentadd it is given by the relation
which in the case of the point-matching MoM, reduces the 3-D

. . . . ; - — 60201 —
volume integral in the computation of the cell-interaction array Gepey = 1 - k%/ Go(7ey, ™) dv' 3
elements to a two-dimensional (2-D) one over the boundary e —1 Vey
surface of the cell. In this way, the complexity and the time o

needed in order to evaluate these elements is also reduééwgre I is the unit dyadic (idemfactorf*< is Kronecker’s
and at the same time, the need for separate treatment of #éa. 7., points at the center of cet, andV, is the volume
self-dyad singularity is eliminated. While the point-matchin§f cell ¢;. The numerical evaluation of the dyadic elements
MoM assumes piecewise uniform sources, the general fomm,., iS the most difficult and time-consuming part in the
of the surface integral allows accurate representation of tgplication of the MoM, mainly because of the following two
scatterer shape and no volume rescaling is needed. It is dkg@sons: a 3-D volume integral has to be computed numerically
proven that the degree of approximation introduced by ttier each component of the ..., dyadic, and in the case of the
point-matching MoM is maintained. The verification of theself-cell interaction, the Green’s function in the integrand of
method and the validation of the computer code written (8) becomes singular and special treatment or approximation
made by solving the problem of scattering by a finite dielectrftas to be used for the numerical evaluation of the integrals.
cylinder with a uniform plane-wave excitation. The cylindrical It would be very helpful if these problems could be alle-
structures, more than the also widely used spherical ones, off@ted while the degree of approximation introduced by the
an effective and efficient model for the simulation of manpoint-matching MoM is maintained. This can be done by
practical objects such as trees, the human body, airplan&gnsforming the volume integral in (3) into a surface one.
missiles, and antennas [9]-[21]. The variety of methods intrbor such a reduction, the free-space DGF in the integrand of
duced in analyzing their behavior reflects both the complexitg) is substituted from the defining vector Helmholtz equation
and the importance of the problem of the 3-D scatterer [d, €q. (4.37)]

general and the cylindrical one in particular. The verification o o o

of the scheme presented in this paper is made by comparisoW’ X V' x Go(7,7.,) — kg Go(7, 7ey) = 16(7 = 7.,) (4)

to published results. Further examples for the scattering of % , . L . .
uniform plane wave by finite cylindrical structures, namely ¥1'€ré V' means differentiation with respect to the primed

coated dielectric cylinder, a hollow layered dielectric cyIindeP’,a”ables' TVYO mtegrg!s are thus obtamec_i. The first one 15
and a lossy cylinder with dielectric coating are presented. evaluated using the sifting property of the Dirac delta function.

The second one is transformed to a surface integral by using
the dyadic Stokes theorem [derived from [7, eq. (A.44)] for

—

Il. MATHEMATICAL TREATMENT P = const). The application of the symmetrical properties of
Consider a finite 3-D scatterer of relative complex permiff€ free-space DGF obeying the radiation condition at infinity
tivity e,. excited by an incident fieldmc. When the scatterer [7, Table IV-1] gives the final result

volume is replaced by its equivalent dielectric polarization 5 o,

currents, the following volume integral equation results for —kp A Go(Tep s 7) dv

the total electric fieldZ(7) in the volumeV of the scatterer 0 -

(31, [4]. [7]: = [ +7§ [(V x Go(7n,, 7)) x 7] ds'  (5)
S,

1

Eme(7) = E(7) - k%/ Go(7,7) - (- — D)E(") dv" (1) whereS., is the boundary surface of voluni&, ands is its
v outward-unit normal vector.

o ) ) ~ Although (5) has been formally obtained from (4), the proof
where Go(7, ") is the free-space dyadic Green's functiofls correct if the DGF is considered in the distributional sense.
(DGF) [7, eq. (4.44)]k, is the free-space wavenumber, and This consideration especially covers the self-dyad case (i.e.,
is located withinV’. In order to solve (1) by the point-matchingwhen ¢, = ¢2) when the DGF singularity is contained in
MoM the volume of the scatterer is divided into a numbeof  {he integration volume. Otherwise the proof in this case can
cells. Assuming that the number of the cells is large enoughe made by isolating the singularity in a shrinking volume,
such that the field and the permittivity within each cell cags in [8]. Equation (5) can be considered as describing an
be considered constant, (1) is applied to the centers of @juivalent problem, where electric volume sources have been
cells and the integral equation is transformed to an algebr@gmaced by magnetic surface ones. However, since (5) is

system [1], [2], [9] obtained with mere algebraic manipulation, this equivalence
o R . is not clear enough. A stricter proof (which also clarifies the
[9cper] - {(Ecs = DB, } = {EZ°}. (2)  equivalent problems involved and permits the investigation of

_ _ ) ~ the approximation errors) can be made with the use of the
The solution of the system in (2) yields the normalizedecond Green's theorem, always in the sense of distributions.

dielectric polarization vectdi(e., —1)E,,] in each celle., is The field scattered by cell is given by
the relative complex permittivity of the ced} ). Each dyadic

eIementEczc1 of the cell interaction matrix in (2) represents Egcatt(;) - k%/ 80(;7 7Y (ee — 1)56(;') d'.  (6)
the contribution of the field in celt; to the field in cellcy Ve
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The field E. inside the cell can be written as the sum of aources. The whole process of obtaining (12) describes a
constant parﬁ and a varying par€ as follows: sequence of equivalent problems, where the dielectric volume
S, = is replaced by its equivalent polarization currents, which are in
Le() = C+ ). ™ urn approximated by constant volume electric currents, which

The parts of thels<att field due toC and & are both given are finally replaced by equivalent surface magnetic currents.
by expressions si(;‘nilar to (6). Consider now that withinV,, the Helmholtz equation for

The assumption that the field and the permittivity withid(7") gives
cell c are constant yields V' x V' x &) = V' x V' x B.(7") = k2e.B.(7). (13)

E(7) = 2 A Go(7,7) dv' - [(ec—1)C].  (8) In view of (6) and for constant cell permittivity, we obtain
In view of the limiting procedure (number of cells tends to(e.—1) | Go(7,7)-V'x V' x &) dv' = e EX*(7). (14)
infinity, cell volume tends to zero) used in the formulation of Ve
the MoM, (8) means that Applying the identity of (11) to the varying pa@& of the
scattered field, and in view of (10), it is proved that (8) and (12)
produce the same approximation eri@r Note that although
- the volume distribution of gives a negligible approximation
k%/ Go(7,7) dv' - [(ec — 1)6]‘ (9) error R, the V' x V' x ¢(7") integration term in (11) gives a

Ve substantial field, as is manifested by (14). This field is made
which, assuming that, is constant, defines the approximatioftegligible only by the counteraction of the field produced by
error R for the point matching MoM as the surface values @i This remark should be kept in mind if

by substituting (7) into (11) we had chosen to first replace the

>~ (10) Polarization currents by volume electric, surface electric, and
surface magnetic currents, and then neglect the contribution
of & False use of (13) or (14) in (11) before neglecting the

Replacing(, 7.,) by (7,7 in (4) and using the resulting contribution of(?_COl_JId Iead_ to erroneous results. =
equation in the second Green's theorem [7, eq. (A.45)] asBY NOW substituting (5) into (3), the dyadic element
applied to any arbitrary vectof() and the free-space pGeof the cell interaction matrix is transformed to

K2 [ Go() - (eo — D) &
Ve

<

R=

kg/ Gol,7) - (ee — 1)EF) d/
Ve

as done in a simple trapezoidal quadrature rule.

2C1

Go(7, ) Yields the identity G = T 23870 4§ (7 x Gl 7) x ] '
S Seq
2 / Go(F,7) - J(*) dv' _ (15)
v The curl of the free-space DGF vectorially postmultiplied by
= J(P) Uy (7) fi is evaluated as
N ! ! 4 / A R 1dG0(FG2,7_’V)A—» =N
—/ Go(7,7) - [V x V! x J(7)] dv [V X Go(7o,, )] X A= = — 20 JIAR—(A-R)I] (16)
v R dR
+7§[(v x Gl 7)) x - J(7) where
S - R=i., -7
+ Go(7, 7)) - (A x V' x J(7))] ds’ (11) . : ik
dGo(7e,,7) i 1Y) ¢ dholt 17
whereUy () is the step function of volum&” with the value R URTR) LR (7)
of one within}" and zero outsid&®". The values of the vectors -
and dyads in the surface integral of (11) are considered in t&d the g, . dyad is finally given by
sense of the limit with” tending toS from within the volume - — o e o
V. If J(7) describes an electric-current source distribution [7, Gegey =1 ——78%% + L = I trace{L}
eq. (4.146)], (11) establishes an equivalent problem, where - . 1 dGa(i.
the initial electric volume sources are replaced by equivalent L= j{ = %ﬁ}? ds’. (18)
S,

electric volume, electric surface, and magnetic surface sources.

Replacing /() in (11) by the constant vectof, (5) IS |nstead of using the dyadic notation, (18) and (5) can be
actually proved, and in view of (8), the field scattered by celljiomatively derived by using the scalar free-space Green's

1

¢ is given by function and the mixed potential formulation for the electric
N R~ o o field [27]. By (18), the evaluation of the interaction matrix
() = — | TUy(7) +ji [(V x Go(7,7)) x 7] ds elements has in all cases been reduced to the evaluation of a

- 12 2-D integral instead of a 3-D one, presenting no singularity
e =1)C]. (12) in the integrand. Nine scalar-surface integrals are nominally

Thus, the constant volume (polarization) current sources hapgsent for each face of the surfag in the dyadic integral
been clearly replaced by equivalent surface magnetic-currdniof (18). They can, however, be reduced to a number of one
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Fig. 1. Homogeneous dielectric cylinder. (a) Geometry. (b) Normalized BCS on incidence plane, {€}-oplane, and (d) on equatorial plane. (e)
Normalized radar cross section versiig,..(+ : TM,, x : TE, — TM.).

to six, depending on the shape and orientation of the surfacelhe method used to reduce the 3-D integrals to 2-D ones can
if the integration is performed in a local coordinate syste@so be used for the computation of the scattering amplitude
and symmetry is exploited. In an alternative formulatiod (*)- This is defined for any cell by [4, eq. (10-2)]

tested, where the cells are replaced with equivalent identical eIk

Dscatt /= -
cylindrical cells of equal base area, the number of scalar B = 7 fe(7). (19)

integrations is further reduced with the cost of extra, yet . is the coordinate vector of the center of celind? is the
negligible, approximation error. direction of observation, the scattering amplitude is obtained
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Fig. 2. Hollow layered dielectric cylinder. (a) Geometry. (b) Normalized BCS on incidence plane, @)erplane, and (d) on equatorial plane. (e)
Normalized radar cross section versiig,..(+ : TM;, x : TE, — TM.).

by substituting (16) and (17) into (12) witf., = S.,7., =7 [7, eq. (A.33)], it is proved thaf is parallel to# so that

and |77] — oo. It follows that L=(L # =L (21)

> ko Liproir 7 T P = i i i i
PR = _j_oeﬂko,c., (LT = L] [(eo — DE.] Hence, the scattering amplitude in (20) can be rewritten as

47 o “ Lo
) o L) =10 F@)
L:f C+Jk0R'7ﬁ ds’ (20) . ]{;0 o .
. Fo(f) = —j -2 cHibomt (e, — 1)E,]
4
where R’ is the vector from the cell center to the integration L= ¢ MR ¢ ds

point on the cell surface. By transforming the surface integral Se

to a volume one through the use of the Gauss gradient theorem ?l =00 + ¢ = T — . (22)



1550 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 9, SEPTEMBER 1997

10' = ———
Obi P Obi
}\‘2
10° Bt % ot
AV WA ya X 4 X
B 1V N X ]
10-1 ::’ "::':" Il “::: .“' 81 ‘::: 10—1?
7 \‘il ¥ ) ’1' X: 4
- I E
1 0-2 IIIITe ST [ttt et 1U2::IZ::Z:::ZZ:Z S3attttrts
ﬁ ;
10° 10
-180 -120 -60 0 60 120 180 0 60 120 180
) N
(b) (©)
10' 3
Obi Ob
3 2, / /[
! S / s
10! > 10 ; Vi N
) o /I \) /I
3 7h- 7[
109 5 ///
3 L7
10 0 60 120 180 JO 30 60 90
) ‘()inc
(d) (e)

Fig. 3. Coated dielectric cylinder. (a) Geometry. (b) Normalized BCS on incidence plane, (g)oplane, and (d) on equatorial plane. (d) Normalized
radar cross section versu,..(+ : TM;,x : TE, — TM.).

For a total numbery of cells, the scattering amplitude isThus, the scattering amplitude necessitates the numerical eval-

given by uation of only one scalar surface integral for each cell.
> ]\T
f0,0) = f7) =T, F(#) (23) lll. NUMERICAL APPLICATION
e=l1 For the verification of the method and the validation of the

and the bistatic cross section (BCS) normalized by the squa@mputer code, the problem of a dielectric cylinder = 4)
of the free-space wavelength and f(ﬁim| =1is given by  with base radius? = 0.25), and heighth = 0.5}, excited
) by a uniform plane wave is used. Three cases of incidence
i (#) _ 4_7r|f(;,)|2 — 4_”f(7c) PR, (24) are consideredTM,, TE,, TM,, the notation describing
A3 A3 A3 plane waves with the specified field vector transverse to the
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Fig. 4. Lossy cylinder with dielectric coatin@,M,. incidence. (a) Geometry. (b) Normalized BCS on incidence plane, (g{onplane, and (d) on equatorial
plane. (e) Normalized radar cross section ver8ys.(=!/: (solid line): 0, (dashed line)3.03,+ : 0.3, x : 3,0 : 30).

incidence plane:Oz and propagating in the positive directionthat a number ofV, x N, = 52 x 10 = 520 cells provided

of the axis denoted by the subscript [Fig. 1(a)]. For thihe best compromise between the time and memory needed
application of the MoM, the base of the cylinder is divideénd the accuracy obtained. The computed results foll'itie

into a number of concentric rings and each ring into a numbease [solid line in Fig. 1(b) and (c)] show very good agreement
of sectors, in such a way that the base is eventually subdividedh previously published ones [9]. Typical run time for filling
into NV, equal areas. The height of the cylinder is divided intthe complex and fully populated interaction matrix is about 15
Ny, disks of equal height. Thus, a total numbegfx IV;, cells  min, yielding an average time of 0.37 ms per element or 3.3
of equal volume is obtained and the cell boundary surfaces per cell; actual time is a little more, since the program
follow the reference surfaces of the cylindrical coordinatexploits the symmetry wherever possible. Computations have
system local to the cylinder. The convergence check showiegen implemented on an HP730 Apollo workstation using
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FORTRAN77 and a simple Simpson 1/3 quadrature rule forIn contrast to the previous example, the coated dielectric
the evaluation of the integrals. cylinder [Fig. 3(a)] presents high directivity for tHEM_ case
The normalized BCS on the three Cartesian coordinaded a reduced and more uniform one for fhikl, and TE,
planes is plotted in Fig. 1(b)—(d), respectively. The existingases [Fig. 3(b)-(d)]. The TM RCS [Fig. 3(e)] again has its
symmetry with respect to theOz incidence plane has beenmaximum at about 45angle of incidence whereas the TE RCS
exploited in drawing the figures. From the plots it can bis largest at broadside inciden¢é;,. = 90°) and is about
seen that the homogeneous cylinder shows directivity to the order of magnitude greater with respect to axial incidence
incidence direction with a small backscattering lobe. The radat;,. = 0°), as in the case of the hollow layered dielectric
cross section (RCS) versus,. [Fig. 1(e)] has its maximum cylinder.
at about 50 for TE incidence, whereas for TM incidence The last example considered is the scattering from a lossy
presents three local maxima at angles 0, 45, arfd 90 cylinder with a dielectric coating [Fig. 4(a)]. Five cases have
The second example treated is a hollow layered dielectbieen considered for the imaginary patf of the relative
cylinder [Fig. 2(a)]. From the BCS plots [Fig. 2(b)—(d)] it carpermittivity of the cylinder, namely!’ = 0.,0.03,0.3, 3., 30.
be seen that although the directivity is increased compar€tde cylinder presents stronger directivity for ti&/1, case
to the homogeneous cylinder case, the curves are smootliég. 4(b)—(d)] than thél'E,. [Fig. 5(a)—(c)] case, whereas the
and a stronger backscattering exists for the TM case, wher838d . illumination produces almost the same pattern as the
the TE, scattering is weaker. It is also worth noting that th8'M,, case with respect to the propagation direction. The effect
TM (RCS) [Fig. 2(e)] is almost constant for large angles d#f the conductivity becomes evident for valuese(if greater
incidence, as we tend to the broadside incidence case. than 0.3 and results in reducing the scattered power, while
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increasing both the forward and backward scattering. For loy3] L. E. Allan, and G. C. McCormick, “Measurements of the backscatter
loss values the behavior of the lossy cylinder on the incidence matrix of dielectric bodies,IEEE Trans. Antennas Propagatol. AP-

plane resembles that of the coated dielectric cylinder. Th

effects can also be seen in the RCS vergys plot [Figs. 4(e)

and 5(d)].

[15]

IV. CONCLUSIONS [16]

In this paper, a point-matching MoM scheme is presented
which, for the case of scattering of an incident wave by [&7]
dielectric object, reduces the evaluation of the 3-D integrals of
the interaction matrix elements to 2-D ones. The new relations
for the interaction matrix elements maintain the same degréél
of approximation as the original ones and avoid the singularity
of the DGF in the self dyad, thus making the application df9]
MoM more flexible. Application is made and radiation patterns
are given for scattering by various dielectric and lossy finitgg)
scatterers of cylindrical geometry illuminated by a uniform
plane wave. The method can be extended to 2-D problen[ﬁ,]
thus reducing the surface integrals to line integrals.
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