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Application of a Point-Matching MoM Reduced
Scheme to Scattering from Finite Cylinders

Antonis G. Papagiannakis,Member, IEEE

Abstract—One of the most common methods for the solution
of three-dimensional (3-D) scattering problems is the electric-field
volume integral equation numerically solved by the application
of the method of moments (MoM)—usually the point-matching
version. Although simple to formulate, it shows inherent diffi-
culty and complexity because of the 3-D integrals appearing in
the interaction matrix elements and of the singularity of the
dyadic Green’s function (DGF) present in the computation of
the self-cell elements. In this paper, a transformation method is
presented, which in the case of the point-matching MoM, both
reduces the 3-D integrals to two-dimensional (2-D) ones, and also
eliminates the need of separate treatment of the singularity while
maintaining the same degree of approximation. Comparison to
published results is made for the case of scattering by a finite
dielectric cylinder. Further examples are presented for scattering
by layered dielectric cylinders and lossy cylindrical shells excited
by uniform plane waves.

Index Terms— Cylinders, dielectric bodies, electromagnetic
scattering, moment methods.

I. INTRODUCTION

T HE PROBLEM of scattering of an incident field by
dielectric (perfect or lossy) scatterers is a subject of

great interest in the study of phenomena such as propagation
through rain, snow or forests, radiation of antennas in the
presence of inhomogeneities and obstacles, power absorption
by biological tissues for medical diagnosis purposes or for
hyperthermia in cancer therapy, coupling to airborne bodies
possibly with dielectric-filled apertures, and many other man-
ifestations of electromagnetic-field interaction with material
bodies. The methods used to attack these problems present a
great variety being analytical, semianalytical, or numerical.
However, the complexity of such three-dimensional (3-D)
problems almost inevitably leads to the use of numerical
methods for the computation of the internal field as well as the
far field characteristics [1], [2]. Whereas asymptotic methods
based on the Rayleigh–Born approximation are suitable for
the low-frequency regime, and asymptotic techniques such
as the Wentzel–Kramer–Brillouin (WKB) method and the
geometrical theory of diffraction are suitable in the high-
frequency regime, the so-called resonance region, where the
objects are of the order of a wavelength, necessitates an exact
solution of Maxwell’s equations.
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A method commonly used in this region is the use of
the equivalent polarization currents and the formulation of
an integral equation for the field inside the scatterer [3], [4].
The integral equation can subsequently be transformed to an
algebraic system and solved numerically by the application of
the method-of-moments (MoM) technique [1]–[6]. The most
preferably used version of the MoM is the point-matching one.
It is simple to formulate and apply, can treat homogeneous
as well as inhomogeneous problems, gives both the internal
and the external field, and yields sufficiently accurate results,
especially for far-field and other averaged characteristics.

One of the most serious drawbacks and difficulties in the
application of the point-matching MoM is, besides the large
arrays obtained, the 3-D volume integrals that have to be
numerically computed for the evaluation of the cell-interaction
array elements. These 3-D integrals are time-consuming and
difficult to compute, especially for arbitrary cell shapes, and
they usually require additional approximations. In addition,
special care must be taken and further approximations must
be made in the evaluation of the diagonal elements, which
represent the self-cell interaction and contain the singularity
of the Green’s function in the self dyad [1]–[8].

The effort to reduce the burden of computation of the
interaction array elements and to effectively treat the self-
cell singularity is evident in works using the MoM [11],
[14]–[26]. The numerical treatment of the singularity can
be made by analytically transforming the singular integral,
confining the source point within a cell of arbitrary shape and
size, and numerically evaluating the integrals [22]. However,
in this case the number of volume integrals per cell increases
to two or three, while the nearly singular behavior of the
integrals is not avoided in the case of small self-cell volume.
When the source distribution is uniform or linear, Gauss’
integral theorem has been used to reduce the dimension of
the singular integral, mainly in the static case [23], but the
cell shape can only be polygonal with straight edges or
polyhedral with planar sides. Also, integration of the Green’s
function derivatives is not considered. The use of linear-shape
functions extends the method and integration of the gradient
of the scalar Green’s function is achieved for planar triangular
cells [25], [26]. The use of FEM-type elements (linear or
parametric) for describing the scatterer volume allows one
to reduce the singular volume integral to a surface one and
also gives greater flexibility in representing complex shapes
[24], [25], but the number of volume integrations per cell is
again increased to three and point matching is used in the
examples presented.
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In the present paper, a transformation method is presented,
which in the case of the point-matching MoM, reduces the 3-D
volume integral in the computation of the cell-interaction array
elements to a two-dimensional (2-D) one over the boundary
surface of the cell. In this way, the complexity and the time
needed in order to evaluate these elements is also reduced
and at the same time, the need for separate treatment of the
self-dyad singularity is eliminated. While the point-matching
MoM assumes piecewise uniform sources, the general form
of the surface integral allows accurate representation of the
scatterer shape and no volume rescaling is needed. It is also
proven that the degree of approximation introduced by the
point-matching MoM is maintained. The verification of the
method and the validation of the computer code written is
made by solving the problem of scattering by a finite dielectric
cylinder with a uniform plane-wave excitation. The cylindrical
structures, more than the also widely used spherical ones, offer
an effective and efficient model for the simulation of many
practical objects such as trees, the human body, airplanes,
missiles, and antennas [9]–[21]. The variety of methods intro-
duced in analyzing their behavior reflects both the complexity
and the importance of the problem of the 3-D scatterer in
general and the cylindrical one in particular. The verification
of the scheme presented in this paper is made by comparison
to published results. Further examples for the scattering of a
uniform plane wave by finite cylindrical structures, namely a
coated dielectric cylinder, a hollow layered dielectric cylinder,
and a lossy cylinder with dielectric coating are presented.

II. M ATHEMATICAL TREATMENT

Consider a finite 3-D scatterer of relative complex permit-
tivity excited by an incident field . When the scatterer
volume is replaced by its equivalent dielectric polarization
currents, the following volume integral equation results for
the total electric field in the volume of the scatterer
[3], [4], [7]:

(1)

where is the free-space dyadic Green’s function
(DGF) [7, eq. (4.44)], is the free-space wavenumber, and
is located within . In order to solve (1) by the point-matching
MoM the volume of the scatterer is divided into a numberof
cells. Assuming that the number of the cells is large enough,
such that the field and the permittivity within each cell can
be considered constant, (1) is applied to the centers of all
cells and the integral equation is transformed to an algebraic
system [1], [2], [5]

(2)

The solution of the system in (2) yields the normalized
dielectric polarization vector in each cell is
the relative complex permittivity of the cell . Each dyadic
element of the cell interaction matrix in (2) represents
the contribution of the field in cell to the field in cell

and it is given by the relation

(3)

where is the unit dyadic (idemfactor), is Kronecker’s
delta, points at the center of cell , and is the volume
of cell . The numerical evaluation of the dyadic elements

is the most difficult and time-consuming part in the
application of the MoM, mainly because of the following two
reasons: a 3-D volume integral has to be computed numerically
for each component of the dyadic, and in the case of the
self-cell interaction, the Green’s function in the integrand of
(3) becomes singular and special treatment or approximation
has to be used for the numerical evaluation of the integrals.

It would be very helpful if these problems could be alle-
viated while the degree of approximation introduced by the
point-matching MoM is maintained. This can be done by
transforming the volume integral in (3) into a surface one.
For such a reduction, the free-space DGF in the integrand of
(3) is substituted from the defining vector Helmholtz equation
[7, eq. (4.37)]

(4)

where means differentiation with respect to the primed
variables. Two integrals are thus obtained. The first one is
evaluated using the sifting property of the Dirac delta function.
The second one is transformed to a surface integral by using
the dyadic Stokes theorem [derived from [7, eq. (A.44)] for

const.. The application of the symmetrical properties of
the free-space DGF obeying the radiation condition at infinity
[7, Table IV-1] gives the final result

(5)

where is the boundary surface of volume and is its
outward-unit normal vector.

Although (5) has been formally obtained from (4), the proof
is correct if the DGF is considered in the distributional sense.
This consideration especially covers the self-dyad case (i.e.,
when when the DGF singularity is contained in
the integration volume. Otherwise the proof in this case can
be made by isolating the singularity in a shrinking volume,
as in [8]. Equation (5) can be considered as describing an
equivalent problem, where electric volume sources have been
replaced by magnetic surface ones. However, since (5) is
obtained with mere algebraic manipulation, this equivalence
is not clear enough. A stricter proof (which also clarifies the
equivalent problems involved and permits the investigation of
the approximation errors) can be made with the use of the
second Green’s theorem, always in the sense of distributions.

The field scattered by cell is given by

(6)
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The field inside the cell can be written as the sum of a
constant part and a varying part as follows:

(7)

The parts of the field due to and are both given
by expressions similar to (6).

The assumption that the field and the permittivity within
cell are constant yields

(8)

In view of the limiting procedure (number of cells tends to
infinity, cell volume tends to zero) used in the formulation of
the MoM, (8) means that

(9)

which, assuming that is constant, defines the approximation
error for the point matching MoM as

(10)

as done in a simple trapezoidal quadrature rule.
Replacing by in (4) and using the resulting

equation in the second Green’s theorem [7, eq. (A.45)] as
applied to any arbitrary vector and the free-space DGF

yields the identity

(11)

where is the step function of volume with the value
of one within and zero outside . The values of the vectors
and dyads in the surface integral of (11) are considered in the
sense of the limit with tending to from within the volume

. If describes an electric-current source distribution [7,
eq. (4.146)], (11) establishes an equivalent problem, where
the initial electric volume sources are replaced by equivalent
electric volume, electric surface, and magnetic surface sources.

Replacing in (11) by the constant vector , (5) is
actually proved, and in view of (8), the field scattered by cell

is given by

(12)

Thus, the constant volume (polarization) current sources have
been clearly replaced by equivalent surface magnetic-current

sources. The whole process of obtaining (12) describes a
sequence of equivalent problems, where the dielectric volume
is replaced by its equivalent polarization currents, which are in
turn approximated by constant volume electric currents, which
are finally replaced by equivalent surface magnetic currents.

Consider now that within , the Helmholtz equation for
gives

(13)

In view of (6) and for constant cell permittivity, we obtain

(14)

Applying the identity of (11) to the varying part of the
scattered field, and in view of (10), it is proved that (8) and (12)
produce the same approximation error. Note that although
the volume distribution of gives a negligible approximation
error , the integration term in (11) gives a
substantial field, as is manifested by (14). This field is made
negligible only by the counteraction of the field produced by
the surface values of. This remark should be kept in mind if
by substituting (7) into (11) we had chosen to first replace the
polarization currents by volume electric, surface electric, and
surface magnetic currents, and then neglect the contribution
of . False use of (13) or (14) in (11) before neglecting the
contribution of could lead to erroneous results.

By now substituting (5) into (3), the dyadic element
of the cell interaction matrix is transformed to

(15)
The curl of the free-space DGF vectorially postmultiplied by

is evaluated as

(16)

where

(17)

and the dyad is finally given by

(18)

Instead of using the dyadic notation, (18) and (5) can be
alternatively derived by using the scalar free-space Green’s
function and the mixed potential formulation for the electric
field [27]. By (18), the evaluation of the interaction matrix
elements has in all cases been reduced to the evaluation of a
2-D integral instead of a 3-D one, presenting no singularity
in the integrand. Nine scalar-surface integrals are nominally
present for each face of the surface in the dyadic integral

of (18). They can, however, be reduced to a number of one
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(a)

(b) (c)

(d) (e)

Fig. 1. Homogeneous dielectric cylinder. (a) Geometry. (b) Normalized BCS on incidence plane, (c) onyOz plane, and (d) on equatorial plane. (e)
Normalized radar cross section versus#inc�(+ : TMx;� : TEx —: TMz).

to six, depending on the shape and orientation of the surface
if the integration is performed in a local coordinate system
and symmetry is exploited. In an alternative formulation
tested, where the cells are replaced with equivalent identical
cylindrical cells of equal base area, the number of scalar
integrations is further reduced with the cost of extra, yet
negligible, approximation error.

The method used to reduce the 3-D integrals to 2-D ones can
also be used for the computation of the scattering amplitude

. This is defined for any cell by [4, eq. (10-2)]

(19)

If is the coordinate vector of the center of celland is the
direction of observation, the scattering amplitude is obtained
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(a)

(b) (c)

(d) (e)

Fig. 2. Hollow layered dielectric cylinder. (a) Geometry. (b) Normalized BCS on incidence plane, (c) onyOz plane, and (d) on equatorial plane. (e)
Normalized radar cross section versus#inc�(+ : TMx;� : TEx —: TMz):

by substituting (16) and (17) into (12) with
and . It follows that

(20)

where is the vector from the cell center to the integration
point on the cell surface. By transforming the surface integral
to a volume one through the use of the Gauss gradient theorem

[7, eq. (A.33)], it is proved that is parallel to so that

(21)

Hence, the scattering amplitude in (20) can be rewritten as

(22)
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(a)

(b) (c)

(d) (e)

Fig. 3. Coated dielectric cylinder. (a) Geometry. (b) Normalized BCS on incidence plane, (c) onyOz plane, and (d) on equatorial plane. (d) Normalized
radar cross section versus#inc�(+ : TMx;� : TEx —: TMz).

For a total number of cells, the scattering amplitude is
given by

(23)

and the bistatic cross section (BCS) normalized by the square
of the free-space wavelength and for is given by

(24)

Thus, the scattering amplitude necessitates the numerical eval-
uation of only one scalar surface integral for each cell.

III. N UMERICAL APPLICATION

For the verification of the method and the validation of the
computer code, the problem of a dielectric cylinder
with base radius and height , excited
by a uniform plane wave is used. Three cases of incidence
are considered: , , , the notation describing
plane waves with the specified field vector transverse to the
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(a)

(b) (c)

(d) (e)

Fig. 4. Lossy cylinder with dielectric coating,TMx incidence. (a) Geometry. (b) Normalized BCS on incidence plane, (c) onyOz plane, and (d) on equatorial
plane. (e) Normalized radar cross section versus#inc�("

00

r
: (solid line): 0, (dashed line):0:03;+ : 0:3;� : 3; � : 30).

incidence plane and propagating in the positive direction
of the axis denoted by the subscript [Fig. 1(a)]. For the
application of the MoM, the base of the cylinder is divided
into a number of concentric rings and each ring into a number
of sectors, in such a way that the base is eventually subdivided
into equal areas. The height of the cylinder is divided into

disks of equal height. Thus, a total number of cells
of equal volume is obtained and the cell boundary surfaces
follow the reference surfaces of the cylindrical coordinate
system local to the cylinder. The convergence check showed

that a number of cells provided
the best compromise between the time and memory needed
and the accuracy obtained. The computed results for the
case [solid line in Fig. 1(b) and (c)] show very good agreement
with previously published ones [9]. Typical run time for filling
the complex and fully populated interaction matrix is about 15
min, yielding an average time of 0.37 ms per element or 3.3
ms per cell; actual time is a little more, since the program
exploits the symmetry wherever possible. Computations have
been implemented on an HP730 Apollo workstation using
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(a) (b)

(c) (d)

Fig. 5. Lossy cylinder with dielectric coating,TEx incidence. (a) Normalized BCS on incidence plane, (b) onyOz plane, and (c) on equatorial plane. (d)
Normalized radar cross section versus#inc�("

00

r
: (solide line): 0, (dashed line):0:03;+ : 0:3;� : 3; � : 30).

FORTRAN77 and a simple Simpson 1/3 quadrature rule for
the evaluation of the integrals.

The normalized BCS on the three Cartesian coordinate
planes is plotted in Fig. 1(b)–(d), respectively. The existing
symmetry with respect to the incidence plane has been
exploited in drawing the figures. From the plots it can be
seen that the homogeneous cylinder shows directivity to the
incidence direction with a small backscattering lobe. The radar
cross section (RCS) versus [Fig. 1(e)] has its maximum
at about 50 for TE incidence, whereas for TM incidence
presents three local maxima at angles 0, 45, and 90.

The second example treated is a hollow layered dielectric
cylinder [Fig. 2(a)]. From the BCS plots [Fig. 2(b)–(d)] it can
be seen that although the directivity is increased compared
to the homogeneous cylinder case, the curves are smoother
and a stronger backscattering exists for the TM case, whereas
the scattering is weaker. It is also worth noting that the
TM (RCS) [Fig. 2(e)] is almost constant for large angles of
incidence, as we tend to the broadside incidence case.

In contrast to the previous example, the coated dielectric
cylinder [Fig. 3(a)] presents high directivity for the case
and a reduced and more uniform one for the and
cases [Fig. 3(b)–(d)]. The TM RCS [Fig. 3(e)] again has its
maximum at about 45angle of incidence whereas the TE RCS
is largest at broadside incidence and is about
an order of magnitude greater with respect to axial incidence

, as in the case of the hollow layered dielectric
cylinder.

The last example considered is the scattering from a lossy
cylinder with a dielectric coating [Fig. 4(a)]. Five cases have
been considered for the imaginary part of the relative
permittivity of the cylinder, namely .
The cylinder presents stronger directivity for the case
[Fig. 4(b)–(d)] than the [Fig. 5(a)–(c)] case, whereas the

illumination produces almost the same pattern as the
case with respect to the propagation direction. The effect

of the conductivity becomes evident for values of greater
than 0.3 and results in reducing the scattered power, while
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increasing both the forward and backward scattering. For low-
loss values the behavior of the lossy cylinder on the incidence
plane resembles that of the coated dielectric cylinder. These
effects can also be seen in the RCS versusplot [Figs. 4(e)
and 5(d)].

IV. CONCLUSIONS

In this paper, a point-matching MoM scheme is presented
which, for the case of scattering of an incident wave by a
dielectric object, reduces the evaluation of the 3-D integrals of
the interaction matrix elements to 2-D ones. The new relations
for the interaction matrix elements maintain the same degree
of approximation as the original ones and avoid the singularity
of the DGF in the self dyad, thus making the application of
MoM more flexible. Application is made and radiation patterns
are given for scattering by various dielectric and lossy finite
scatterers of cylindrical geometry illuminated by a uniform
plane wave. The method can be extended to 2-D problems,
thus reducing the surface integrals to line integrals.
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